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UK Space Agency
The UK Space Agency is at the heart of UK efforts to explore and benefit from 
space.  It is responsible for all strategic decisions on the UK civil space programme 
and provides a clear, single voice for UK space ambitions.
 
The Agency is responsible for ensuring that the UK retains and grows a strategic 
capability in the space-based systems, technologies, science and applications. 
It leads the UK’s civil space programme in order to win sustainable economic 
growth, secure new scientific knowledge and provide benefits to all citizens.

ESA
From the beginnings of the ‘space age’, Europe has been actively involved 
in spaceflight. Today it launches satellites for Earth observation, navigation, 
telecommunications and astronomy, sends probes to the far reaches of the Solar 
System, and cooperates in the human exploration of space.

Space is a key asset for Europe, providing essential information needed by 
decision-makers to respond to global challenges. Space provides indispensable 
technologies and services, and increases our understanding of our planet and 
the Universe. Since 1975, the European Space Agency (ESA) has been shaping the 
development of this space capability.

By pooling the resources of 22 Member States, ESA undertakes programmes and 
activities far beyond the scope of any single European country, developing the 
launchers, spacecraft and ground facilities needed to keep Europe at the forefront 
of global space activities.

Astro Academy Principia
A unique education programme developed by the UK’s National Space Academy 
for the UK Space Agency and ESA (European Space Agency), Astro Academy: 
Principia uses a suite of demonstrations filmed by ESA astronaut Tim Peake 
aboard the ISS during his six month Principia mission to explore topics from 
secondary physics and chemistry curricula.  The programme is made up of  
stand-alone teaching films, downloadable video clips, downloadable files that can 
be used with the free-to-use dynamical analysis software programme “Tracker”, 
written teacher guides and links to more than 30 further teaching activities.

Principia
Tim’s mission to the International Space Station, called ‘Principia’, used the unique 
environment of space to run experiments as well as try out new technologies for 
future human exploration missions. Tim was the first British ESA astronaut to visit 
the Space Station where he spent six months as part of the international crew.

National Space Academy
Established in 2011 and led by the National Space Centre, the National Space 
Academy is now the UK’s largest space education and skills development 
programme for secondary and further education. Its team includes some of the 
country’s best science teachers, project scientists and engineers who deliver 
masterclasses and intensive teacher training for thousands of students and 
teachers across the UK every year. Internationally the Academy works extensively 
with the European Space Agency, the UAE Space Agency, and it also leads the 
UK’s ongoing space education and skills development work with China.



Introduction

Tim Peake’s mission aboard the International Space Station (ISS) was itself a classic 
demonstration of centripetal physics – the gravitational attraction of the entire Earth upon 
Tim’s mass is what kept him moving in a nearly circular orbit around the planet for six months. 
This teacher guide concentrates on classroom demonstrations and orbital experiments aimed 
at deepening understanding of the modelling of Newton’s laws and the role of centripetal 
forces. The ground-based experiments, focused on qualitative and quantitative understanding 
of motion in vertical circles, are coupled with Tim’s orbital demonstrations in microgravity, 
which yield very different results. The applications range from aerospace and astronautic 
training of pilots for the rigours of launch to better understanding the spectacular visual 
spectacle of the Northern and Southern lights. Classic modelling and extension questions are 
included to deepen understanding in multiple areas of application.

Tim’s orbital demonstrations

1) Newton’s First Law
 
On Earth, demonstrations of Newton’s First Law  
can sometimes be problematic due to the nature of resistive forces such as friction between an 
object and a table surface – or confusion can arise as we may be forced to model in one dimension 
or plane only. Microgravity gives a superb environment to demonstrate, in multiple orientations, the 
consequences of Newton’s First Law. 

In this demonstration, we can clearly see the implications of Newton’s first Law of Motion.
At the start, Tim has a plastic green ball confined to a circular orbital path because he is holding on 
to the end of the string. The ball’s momentum wants to keep it moving in a straight line at a constant 
speed  - but the tension force exerted by Tim through the string and onto the ball is deflecting it 
from a straight line path. The tension force – directed (from the ball’s point of view) inwards towards 
the centre of the circular path – is providing the role of a centripetal, or centre-directed, force.

Clips:
V1 Ball on tether released - horizontal plane
V2 Ball on tether released – vertical plane

Circular Motion

Initially, tension in the string provides the  
centripetal force necessary to force the ball to 
move with circular motion

When Tim releases the string, the ball moves 
with a trajectory of constant speed and direction



When Tim releases the string, the tension force collapses. Then, with no centripetal force 
acting, there is no overall (resultant) force acting on the ball. Since the air resistance is minimal 
(see later), the ball now has no force acting on it to change its momentum state and so, keeps 
moving in a straight line at a constant speed - in the direction it was moving at the moment 
the tension collapsed.

Tim’s demonstrations show this in multiple orientations.

2) Circular Loops

Circular motion modelling on Earth is often 
a complex process in which multiple forces 
which contribute towards a centre-directed, 
or centripetal force, must be considered. In 
many cases, the relative contribution of these forces will change during a single complete cycle 
of modelling whatever is moving in a circle. Microgravity offers an environment in which initial 
simple modelling can be introduced in a way that’s much more challenging here on Earth.

In these demonstrations Tim has set a plastic ball rolling along a polycarbonate loop track.  
In the microgravity environment of the ISS, once the ball is rolling, the only effective force 
acting on it is the contact force of the track on the ball – which is directed inwards, towards 
the centre of the loop. This contact force is therefore providing the centripetal force needed 
to confine the ball to a circular path.

Because this contact force arises as a result of 
the ball’s motion along the track, there is no 
minimum force needed to confine the ball to 
its circular path. As long as the ball continues 
to roll, the contact force between ball and 
track will confine it to a circular path and it 
will keep rolling around the track. In several 
of the standalone clips, we can see over a 
matter of minutes that the very low amount 
of air resistance due to the ball’s motion 
through the atmosphere of the Columbus 
module does indeed slow it down, but it still 
completes the loop path it is following. It is 
only when the ball is dislodged, and the contact force disappears, that the circular motion is 
replaced by linear motion of the ball moving away from the track and across the laboratory.

This is in clear contrast to the ground experiment where the interplay between contact force 
and gravitational force on the ball both contribute to the centripetal force. On Earth, a minimum 
velocity is needed to complete a vertical loop – but in microgravity this is not the case.

The microgravity environment allows a much 
more complete modelling of Newton’s first law 
and circular motion than on the Earth.

Clips:
V3 Vertical ball in hoop - Tim holding
V4 Horizontal ball in hoop - Tim holding
V5 Vertical ball in hoop - clamped



3) Atmospheric drag and air currents in the Columbus module

In this clip we see Tim has set two balls 
in motion rolling around the track – the 
small dense black ball used in previous 
demonstrations and a much larger, hollow and 
less massive metal sphere. As expected, both 
gradually slow down due to air resistance whilst rolling around the track. However, at a very 
low velocity the smaller, yet greater mass, ball continues to roll around the track whilst the 
larger hollow sphere, travelling at the same speed, is seen to drift off the track and traverses 
the Columbus module in a noticeably curving path!

A good extension task would be to invite suggestions from the students as to why this 
behaviour is observed.

Answer: The microgravity environment on the ISS means that atmospheric convective 
processes do not occur – instead, air has to be forcibly circulated by fans and blowers. In the 
Columbus module, the mean air flow is at a speed of around 10cm/s. It is directed towards the 
rear of the module – where the grid backdrop used for our experiments is located.

As the balls reduced in speed around the track, the the force of the airflow on them remained 
in the same direction – almost at 90 degrees to their direction of rolling around the track. 
At higher rolling velocities, the angular momentum of the balls gave them greater stability 
against the effects of this airflow. 

Atmospheric drag and airflow within the ISS produce some interesting effects on the two differently 
sized balls

Clips:
V6 Large and small ball in circular track 
air resistance



But as their speeds reduced over time, it was the lighter (hollow), larger sphere which, due to 
its larger surface area and lower mass, was more susceptible to being dislodged by the airflow 
than the smaller more massive ball.

Eventually, the airflow dislodges it from the track. After the larger sphere departed the track, 
the smaller one was observed to continue its rolling path at even lower speeds.

The larger sphere is observed to drift towards the grid screen and then to change direction 
back towards the camera – a consequence of the air flow in the Columbus module being 
partially blocked by the screen and therefore changing direction and carrying the ball with it.

4) Discussion: Forces – are they centripetal or centrifugal?

This is one of the best ways to start what can be a very prolonged discussion/debate/
argument amongst physics students, teachers and professionals! A simple distinction is 
outlined below:

Centripetal forces are real forces which make objects followed curved paths. In simple level 
modelling, they are directed towards the centre of the circular path instantaneously being 
followed by the object as a result of that particular force or system of forces being applied.

Centrifugal forces are pseudo-forces that seem to exist within the rotating frame of reference 
being modelled. It is often “experienced” as a consequence of the reaction, or contact, 
force produced by the real centripetal force. As an example, anyone who has ridden on a 
roundabout will know that, from their perspective, it feels as if a force is trying to “fling” them 
outwards. No actual real force exists that is trying to effect this change.



Ground based experiments

The modelling of how various forces contribute at different stages towards maintaining 
motion in vertical circles can be done qualitatively or quantitatively – these demonstrations 
are classic ones which can be conducted as stand-alone activities or after the basics of the 
role of a single centre-directed force is discussed using Tim’s demonstrations.

1) Vertical Cup of Water

Curriculum Links:
• Centripetal forces
• Gravity

Key Stage: 5

Equipment List:
• Paper or polystyrene cup
• 1m length of string
• Scissors and tape to construct cup swing
• Water 

Procedure:

To make the swing:
Using scissors, pierce two holes in the cup about 1cm from the top on opposite sides. Thread 
one end of the string through one hole and tie a knot in it so that it cannot be pulled back 
through. Thread the other end through the other hole and repeat. Use several pieces of tape 
to reinforce the area around the holes to prevent the string being ripped out.

To demonstrate centripetal acceleration:
• Fill the cup about ¼ full with water. 
• Starting with the cup hanging down freely, swing it back and forth a few times to 

 build up speed. 
• Then, set the cup swinging in a vertical circle by your side. 
• After a few rotations, slow down and add some sideways rotation to avoid the  

water spilling out of the cup as you bring it to a rest.

For an extension exercise you can put a plastic ball into the cup instead of the water and see 
how slowly you have to loop the cup and ball until the ball falls out of the cup.



Expected Outcomes: 

If you turn the cup upside down normally, you will expect the water to fall out under the action of 
gravity. However, when the cup is swinging in a circular motion, the tension in the string produces a 
centripetal force on the cup, and therefore a centripetal acceleration.

Direction of motion

Direction of motion

Gravity on 
the bucket

Gravity on 
the bucket

Gravity on 
the water

Gravity on 
the water

Centripetal  
force

Normal reaction

Weight of water

Centripetal  
force

Consider the cup at the bottom of the loop.  

The weight points down and the normal force points up; so the net force 
is their difference. The normal force points toward the centre, so it should 
be given the positive value. The net force is the centripetal force provided 
by the tension in the string.
∑F = ma
N − mg = mv2/r   
N = m (v2/r + g)

At the top of the loop the normal and weight point in the same direction.
∑F = ma
N +  mg = mv2/r   
N = mv2/r - mg

If the speed of rotation, v, is sufficient for the tension in the string to 
produce a centripetal acceleration greater than the acceleration due to 
gravity, i.e. 
v2/r > g

then the water will not fall out of the cup, but instead be forced by the 
reaction force between it and the bottom surface to follow the path 
of the cup.

Normal force 
and weight 
of water 
act in same 
direction



2) Vertical Marble Loop-the-Loop

Curriculum Links:
• Centripetal motion
• Gravity
• Reaction/contact forces

Key Stage: 5

Equipment List:
• Loop the loop marble track and marble  

click here for the link for the kit used in the video
• Blu-tack to hold the struts in place
• A long table or laboratory bench

Procedure:

Constructing the marble track
Follow the instructions on the box to fit together the track and build the supports. You will 
want to use some blu-tack to hold the supports down in place on the table. Use trial and error 
to judge the necessary height of the lead in track and use a piece of coloured tape to mark 
the release position for the marble to just make it around the loop. 

Demonstrating the loop
Show three outcomes for the loop. Firstly, release the marble a little below the marker tape so 
that it rolls up the loop but does not complete a loop.

Then, release the marble at the tape to show it just completing a loop and losing contact 
briefly at the top of the loop.

Finally, release the marble a good way above the marker tape to show it easily completing  
the loop.

https://www.amazon.co.uk/Quercetti-Marble-Run-Roller-Coaster/dp/B0000A1ZF9/ref=sr_1_5?ie=UTF8&qid=1457555110&sr=8-5&keywords=skyrail


Expected Outcomes:
Ignoring the effects of air resistance, there are two main forces acting on the ball as it rolls 
around the track:

• the effect of gravity - its weight - which will always be directed downwards
• the reaction, or contact force of the track on the ball itself - which will always be directed 

inwards and at 90 degrees to the surface of the track

The combination of these two forces provides the centripetal force to keep the ball moving in 
a circular path.

At the bottom of the loop 
The marble is moving with minimum velocity.

Gravity is directed downwards and the contact 
force upwards. The resultant force (which 
acts as the centripetal force) is the contact 
force (which is upwards or normal) minus the 
gravitational force (which is downwards).
∑F = ma
N - mg = mv2/r   
N = m (v2/r + g)

Half way up the loop
The marble is slowing down.

Gravity is still acting downwards but the  
contact force is at 90 degrees to the track 
surface - directed towards the centre of  
the circle.  

The resultant centripetal force is purely the 
contact force.



At the top of the loop 
The marble is moving with minimum velocity.

Gravity and contact forces are both directed 
downwards.

The resultant centripetal force is the contact 
force plus the gravitational force.
∑F = ma
N + mg = mv2/r   
N = mv2/r - mg

The marble will complete the loop as long as there is a contact force. To find the minimum 
velocity it requires to do this we can model the marble as having just lost contact allowing us 
to model a scenario where the contact force is zero.
If N = 0, then       mv2/r - mg

As a result, at this point the centripetal force will be provided by gravity alone and since  
mass cancels:
g =  v2/r

So the minimum velocity required to complete the loop is:
v = √(gr)



Space and aerospace contexts

Orbital gymnastics and Skylab – NASA’s first space station

Launched in May 1973, Skylab was the first United States space station and remained in 
orbit until 1979. Although much smaller than the ISS (70 tonnes vs 450 tonnes), Skylab’s 
Orbital Workshop space has a much larger internal diameter (over 6 metres) meaning that 
the astronauts who participated in the 3 crew missions to the Station in 1973-74 had the 
opportunity to run around the internal storage lockers using the contact forces between their 
feet and the lockers to create a centripetal force.

In this clip we see Skylab 2 Commander Pete 
Conrad running around the lockers:
https://www.youtube.com/
watch?v=Awe6vOXURpY

Students could measure his period of 
running (the time taken to complete one 
circuit) and use the internal station diameter 
to calculate the effective g-force he was 
creating in his run.

Alan Bean, the commander of Skylab 3, was a  
college-level gymnast and the following footage 
demonstrates many principles of circular 
motion, conservation of angular momentum 
about multiple axes and general orbital grace:
https://www.youtube.com/
watch?v=dmnmuTv4pGE

The crew of the final manned Skylab mission 
were forbidden to run around the lockers as  
the vibrations were disrupting solar 
observations being carried out by the station’s 
automated solar telescopes!

Skylab as seen from the Skylab 4 command and 
service modules. Credit: NASA

Skylab schematic. Credit: NASA

https://www.youtube.com/watch?v=Awe6vOXURpY 
https://www.youtube.com/watch?v=Awe6vOXURpY 
https://www.youtube.com/watch?v=dmnmuTv4pGE 
https://www.youtube.com/watch?v=dmnmuTv4pGE 


Centrifuges on Earth for “hypergravity” environments – “Spin your Thesis!”

As seen in the film for this episode, most people are familiar with the use of centrifuges for 
training pilots, however they are also used by space agencies for generating HYPERGRAVITY 
environments in which experiments can be conducted.

ESA’s Large Diameter Centrifuge (LDC) at ESTEC 
(European Space Research and Technology 
Centre) in Holland can be used to create 
experimental hypergravity levels from 1 g to 20 g. 
Automated payloads with a mass of up to 80kg 
can be installed and there are opportunities for 
University level students to run research projects 
there through ESA’s “Spin your Thesis” campaign.
http://www.esa.int/Education/Spin_Your_
Thesis!_programme

Extension work - Generating gravity analogues 
in space with rotating space stations
Using rotation to generate a gravity analogue 
in the space environment has been extensively 
explored in films including 2001: A Space Odyssey, 
Elysium and, most recently, The Martian.

Although the basic principles are well-
understood there are significant opportunities 
to present challenging extension scenarios for 
students to explore:

1) In a rotating space station, the effective gravity force experienced is directly proportional to the 
distance from the axis of rotation. Is there a minimum radius of rotation which must be used to 
ensure that the differences between what the head and feet experience as gravity  
pseudo-forces are not harmful to the human body? How would you model this situation?

2) You are in an isolated small room which may or may not be in a rotating space station. There are 
no windows and you experience what feels like 1 g. The following methods listed would help 
you determine whether you are on board a space station or not. For each one, QUALITATIVELY 
describe the differences that would be observed when comparing being on board a rotating 
space station and being on the Earth for each scenario/experiment:

• Observing the behaviour of a circular pendulum
• Dropping an object vertically.

3) Walking forwards then backwards then left and then right. Repeat again and again. What are the 
effects on what you experience as your perceived “weight”?  

ESA’s Large Diameter Centrifuge at ESTEC. 
Credit: ESA

The Space Station from The Martian. Image 
credit: The Martian, 20th Century Fox

http://www.esa.int/Education/Spin_Your_Thesis!_programme
http://www.esa.int/Education/Spin_Your_Thesis!_programme


This ESA image shows the Southern 
aurora – the Aurora Australis, as 
seen from space by astronauts 
aboard the International Space 
Station (ISS) in early 2012. 

Tim recorded this unusual 
footage of the aurorae at sunrise 
in April 2016:
http://www.esa.int/spaceinvideos/
Videos/2016/04/Aurora_skimming_
the_sunrise

Extension work: charged particles, helical trajectories and the Northern/Southern Lights (aurorae)

Most charged particles from the solar wind which become trapped in Earth’s magnetic field will 
spiral to-and-fro along the paths of the field lines, with the centripetal Lorentz force confining 
them to orbiting the field lines.

Some of the most energetic solar wind particles trapped in the radiation belts will be funnelled 
into spiralling paths downwards to impact the Earth’s upper atmosphere in polar regions where 
they produce the auroral displays commonly seen at Northern and Southern latitudes. 

Aurora Australis seen from the ISS. Credit: ESA

Another film of auroral activity filmed by Tim Peake in 2016:
http://www.esa.int/spaceinvideos/Videos/2016/04/Aurora_rise

The diagram below summarises the various interactions of the solar wind with Earth’s magnetic 
field. In this diagram, the paths of protons only are shown (electrons are omitted for clarity). 

solar wind

variable solar wind can give some radiation 
belt particles enough energy to spiral into 
atmosphere and create aurorae

radiation
belt

radiation
belt

Most solar wind particles deflected on past 
planet but a few leak into magnetosphere to get 
trapped in radiation belts

http://www.esa.int/spaceinvideos/Videos/2016/04/Aurora_skimming_the_sunrise
http://www.esa.int/spaceinvideos/Videos/2016/04/Aurora_skimming_the_sunrise
http://www.esa.int/spaceinvideos/Videos/2016/04/Aurora_skimming_the_sunrise
http://www.esa.int/spaceinvideos/Videos/2016/04/Aurora_rise


Further features of the Sun-Earth magnetic environment

Explaining the charged particle behaviour
If charged particles, such as a beam of electrons, move through a region with a magnetic field,  
the external magnetic field will interact with the magnetic field associated with the electron 
beam and cause a deflection of the electron beam – this is the MOTOR effect.

The resulting force, known as the Lorentz force, is governed by
F = q(v x B)

Note that the force on the charge is derived from the vector cross product of v and B – 
the force produced is at right angles to the component of the velocity that itself is at right 
angles to the magnetic field vector at that point. The cross product modelling explains the 
orthogonality of the resultant force with respect to the velocity vector and the magnetic  
field strength.
F=Bqv

• F = Force in newtons (N)
• q = charge on charge carrier in coulombs (C)
• v = velocity of charge carriers (ms-1)
• B = magnetic field strength in tesla (T)

Solar Wind

Interplanetary Medium

Bow Shock
Plasmasphere

Plasma sheet

Neutral point

Magnetotail

Magnetotail

North Lobe

South Lobe

Plasma mantle

Polar Cups

Magnetopause

Magnetosheath



Because of the orthogonal nature of the “motor effect” force, the trajectories of charged 
particles entering magnetic field regions can be curving around the field lines or “spiralling” 
along the field lines, as explained below:

Charged particles orbiting around field lines

Here, the electrons are entering a magnetic field at right angles to the field.

In this case, the force on an electron with charge 
e = -1.6x10-19 coulombs will equal Bev – and this provides 
a centripetal force (centrally directed) confining the 
electron to a circular orbit.
Bev = (mv2)/r

and so

r= radius of orbit = (mv)/Be

This is the principle behind the magnetic confinement 
of charged particle beams in circular particle 
accelerators as well as being applicable to the motion 
of solar wind particles traversing a region of localised 
magnetic fields.

Charged particles following a helical path around field lines

If the velocity of the charged particles entering 
the field is not at 90 degrees to the direction of 
the magnetic field, then:

1. The velocity component that is at 90 degrees 
to the field direction will induce a force on 
the charged particle. This will cause an orbital 
effect around the field lines.

2. The velocity component in the direction of  
the field will remain unchanged. This will cause continuation of lateral translation in the 
direction of the field lines. There will be no acceleration of the charged particles in this 
direction since no force will act in this direction.

3. Combining the two effects will lead to a helical path.

This is how the particles trapped in Earth’s magnetic field will behave – spiralling to-and-fro along 
the field lines until some of them interact with the upper atmosphere producing auroral effects.

Force = Bev

electron 

Magnetic field (B)

electron 

Helical motion

Magnetic field



How are the different colours in Earth’s aurorae produced?

There are a variety of charged particles in 
the Earth’s atmosphere due to the various 
ionic species that exist at different altitudes 
including nitrogen, oxygen and others. When 
the charged particles from the solar wind 
interact with the charged particles in the 
atmosphere, visible light can be emitted. 

The colours emitted in Earth’s atmosphere 
depend on the relative proportion of oxygen 
and nitrogen in the atmosphere and the level 
of solar activity. Colours are also dependent on 
altitude as the relative abundance of different 
ionic species will change with altitude.

Atomic oxygen at about 120-180km glows 
yellow-green but above 322km the colour 
emitted is red. Nitrogen gives off blue when 
ionic and red-purple when neutral. The rippling 
edges are also created by neutral nitrogen.

Since most planets in our Solar System have magnetic fields, we would expect those 
with atmospheres to show auroral features due to solar wind interactions. In these planetary 
atmospheres, other auroral colours may be seen depending on the constituents of the atmosphere. 

Observed features in the atmospheres of Saturn and Neptune are shown in the images below.

The Neptunian magnetic field goes through dramatic changes as Neptune rotates in the solar 
wind because the magnetic field is tilted 47˚ from the rotation axis and offset by 0.55 radii 
from the planet’s physical/geometric centre. Due to this unusual orientation auroraoccur over 

above  
200 km

below 
100 km

A nitrogen atom 
glows blue and a 
secondary electron 
hits an oxygen 
atom, which  
glows green!

An oxygen atom 
glows red

Electrons shoot 
into the upper 
atmosphere

Nitrogen 
molecules 
glow crimson!

The Sun, Earth, and Aurora

The colours of the aurora depend on the 
composition of Earth’s atmosphere at different 
altitudes

Neptunian aurorae (HST images) Image courtesy of ESA
Aurora on Saturn – montage of 
imagery from NASA/ESA missions 
Cassini (Saturn orbiter) and the 
Hubble Space Telescope (HST)

Ionized Nitrogen Excited Oxygen Excited Nitrogen



1.  International Space Station

Determine the orbital speed of the International Space Station - orbiting at 350km above the 
surface of the Earth. The radius of the Earth is 6.37 x 106m. 
(MEarth = 5.98 x 1024kg)

2. Human Centrifuge

As part of his preparation for the mission to the 
International Space Station Tim Peake spent 
time in a human centrifuge to enable him to 
cope with experiencing the effects of different 
g forces. 

(a) Tim experienced g-forces of up to 8 g. If the 
length of the centrifuge arm was 15.0m, at what 
speed was Tim moving?    

(b) In a another space flight simulator an astronaut is rotated horizontally at 20 rpm 
(revolutions per minute) in a radius arm of length 5.0m. The mass of the astronaut is 75kg.

i. Calculate the centripetal force on the astronaut

ii. Show that this force is equivalent to a gravitational force of about 2.2 g

iii. Calculate the rotation rate in rpm that would give a ‘simulated’ gravity of 3 g

2.  Messenger

In 2009, NASA’s Messenger spacecraft became the second spacecraft to orbit the planet 
Mercury. The spacecraft orbited at a height of 125 miles above Mercury’s surface. Determine 
the orbital speed and orbital period of Messenger. 
(RMercury = 2.44 x 106m; MMercury = 3.30 x 1023 kg; 1 mile = 1609m)

Circular Motion

www.youtube.com/watch?v=D-
epG6PWVkI

www.youtube.com/watch?v=D-epG6PWVkI
www.youtube.com/watch?v=D-epG6PWVkI


3.  Artificial Gravity and Rotating Space Stations

2001: A Space Odyssey describes three artificial gravity 
environments, all using rotating bodies: the Space 
Station in parking orbit around the Earth which uses a 
huge rotating doughnut; a spinning space lavatory, and 
the spacecraft Discovery en route to Jupiter which 
uses a small internal carousel. In the film adaptation, 
the astronaut Bowman is seen running around this 
carousel.

(a) To avoid motion sickness the maximum revolutions 
per minute for a space station is 2.0 rpm (revolutions 
per minute). Calculate the radius of the space station 
needed to produce an acceleration of  9.81ms-2

(b) For an astronaut of height 2m calculate the 
difference in acceleration between his head  
(closer to the axis of rotation) and his feet.

(c) When travelling to Jupiter, the spaceship Discovery 
had a special section with a slowly rotating drum to 
produce an artificial gravity roughly equal to that 
of the Moon rather than the Earth (g = 1.7ms-2). If 
the drum makes one revolution every 10 seconds, 
calculate the radius of the drum.

(d) Calculate the difference between the acceleration of the 2m tall astronaut’s head and feet 
in the Discovery craft. How does this compare with that in the space station?

http://www.firstshowing.net/img/aot-
2001.jpg

www.steppingoutsidetoobserve.
wordpress.com

http://www.firstshowing.net/img/aot-2001.jpg
http://www.firstshowing.net/img/aot-2001.jpg
www.steppingoutsidetoobserve.wordpress.com
www.steppingoutsidetoobserve.wordpress.com


5. Flying Pigs

You can determine the acceleration due to gravity by finding the 
time period of a flying pig moving in a banked circular path.

(a) By considering the forces acting on the flying pig as shown in the 
accompanying diagram, derive an expression for the time period, T, 
of the pig’s orbit in terms of its radius, r, and angle, θ.

(b) Given that g = 9.81ms-2 determine the time period of a pig for a 
radius of 20.0cm and angle of 30o.

(c) Devise an experiment using this idea where g can be calculated 
from the gradient of a graph. What will you plot on the x and y axes? 
How is the gradient related to g?

6. Wall of Death

An amusement park ride consists of a large vertical cylinder that spins about its axis fast 
enough that any person inside is held up against the wall when the floor drops away. The 
coefficient of static friction between the person and the wall is µs, and the radius of the 
cylinder is R.

(a) Show that the maximum period of revolution necessary to keep the person from falling is:

(b) Obtain a numerical value for T if R = 4.00m and μs = 0.40

(c) How many revolutions per minute does the cylinder make?
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7. Banked Track Circular Motion With Friction

A car rounds a banked curve as in the diagrams below. The radius of curvature of the road is R, 
the banking angle is θ and the coefficient of static friction is μ.

(a)  Determine the range of speeds the car can have without slipping up or down the road
when the car is about to slide “up” the bank and when the car is about to slide “down” the bank. 

HINT: Friction always opposes the motion so we must look at two possibilities for the friction 
force. We must use separate free-body diagrams for the two cases

when the car is about to slide “up” the bank when the car is about to slide “down” the bank 

(b) Find an equation for the minimum value for μ such that the minimum speed is zero.

(c) What is the range of speeds possible if R = 100m, θ = 10o, and μ= 0.10 (slippery conditions)? 
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8. Vertical Circular Motion

A roller coaster is going through a loop that has a radius of 4.80m. The roller coaster cars 
have a speed of 13.8ms-1 at the top of the loop. During testing and development of the roller 
coaster, it was determined that the cars and passengers have a combined mass of 4800kg on 
an average run. 

(a) Determine the amount of force the track must be designed to withstand at the top in 
order to keep the cars going around the loop.

(b) Determine the minimum speed the cars on this roller coaster can move in order to just 
barely make it through the loop at the top.

(c) The track for the roller coaster mentioned in the last two examples needs to actually be 
stronger at the bottom of the loop. Although the cars will actually speed up as they come down 
to the bottom of the loop, assume the same velocity, radius, and mass as above and determine 
the amount of force the track must be able to withstand at the bottom of the loop.
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1. Launching a Rocket

Determine the orbital speed of the International Space Station - orbiting at 350km above the 
surface of the Earth. The radius of the Earth is 6.37x106m. 
(MEarth = 5.98 x 1024kg)
mv2/r = GMm/r2    so   v = √(GM/r)  
v = ((6.67 x 10-11 x 5.98 x 1024) / (6.37 x 106 + 350 x 103)) 1/2 = 7700ms-1

2. Human Centrifuge

As part of his preparation for the mission to the 
International Space Station Tim Peake spent 
time in a human centrifuge to enable him to 
cope with experiencing the effects of different 
g forces. 

(a) Tim experienced “g-forces” of up to 8 g. If 
the length of the centrifuge arm was 15.0m, at 
what speed was Tim moving?   
a = v2 / r
v = (8 x 9.8 x 15)1/2  = 34.3ms-1

(b) In a another space flight simulator an astronaut is rotated horizontally at 20 rpm 
(revolutions per minute) in a radius arm of length 5.0m. The mass of the astronaut is 75kg.

i.  Calculate the centripetal force on the astronaut
ω = θ/t
ω = (20 x 2π) / 60 = 2.09 rads-1         
F = mrω2

F = 75 x 5 x 2.092 = 1640N

ii. Show that this force is equivalent to a gravitational force of about 2.2 g 
Fgrav  = 75 x 9.8 x 2.2 = 1620N  alternative solution (1640/75) / 9.8 = 2.2 g

iii. Calculate the rotation rate in rpm that would give a ‘simulated’ gravity of 3 g
a = rω2 

ω = (3 x 9.8 / 5)1/2 = 2.42 rads-1

ω = θ / t
2.42 = (revs x 2π) / 60 so revs = 23.1 rpm

Circular Motion

www.youtube.com/watch?v=D-
epG6PWVkI
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3. Messenger

In 2009, NASA’s Messenger spacecraft became the second spacecraft to orbit the planet 
Mercury. The spacecraft orbited at a height of 125 miles above Mercury’s surface. Determine 
the orbital speed and orbital period of Messenger. 
(RMercury = 2.44 x 106m; MMercury = 3.30 x 1023kg; 1 mile = 1609m)
v = √(GM/r)

r = 2.44 x 106 + 125 x 1609 = 2.64 x 106m

v = ((6.67 x 10-11 x 3.3 x 1023) / 2.64 x 106)1/2 = 2890ms-1

v = 2πr/T

T = 2 x π x 2.64 x 106 / 2890 = 5740s

4. Artificial Gravity and Rotating Space Stations

2001: A Space Odyssey describes three artificial gravity 
environments, all using rotating bodies: the Space 
Station in parking orbit around the Earth which uses a 
huge rotating doughnut; a spinning space lavatory, and 
the spacecraft Discovery en route to Jupiter which uses 
a small internal carousel. In the film adaptation, the 
astronaut Bowman is seen running around this carousel.

(a) To avoid motion sickness the maximum revolutions 
per minute for a space station is 2.0 rpm (revolutions  
per minute). Calculate the radius of the space station 
needed to produce an acceleration of  9.81ms-2

ω = θ/t
ω = (2 x 2π) / 60 = 0.21 rads-1

a = rω2

r = 9.81 / 0.212 = 222m

(b) For an astronaut of height 2m calculate the 
difference in acceleration between his head  
(closer to the axis of rotation) and his feet.
a = rω2

r = 222 - 2 = 220m
a = 0.212 x 220 = 9.70ms-2

So difference = 9.81 - 9.70 = 0.11ms-2

http://www.firstshowing.net/img/aot-
2001.jpg
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(c) When travelling to Jupiter, the spaceship Discovery had a special section with a slowly 
rotating drum to produce an artificial gravity roughly equal to that of the Moon rather than 
the Earth (g = 1.7ms-2). If the drum makes one revolution every 10 seconds, calculate the radius 
of the drum.
ω = θ / t
ω = 2π / 10 = 0.63 rads-1

a= rω2

r = 1.7 / 0.632 = 4.3m

(d) Calculate the difference between the acceleration of the 2m tall astronaut’s head and feet 
in the Discovery craft. How does this compare with that in the space station?
r = 4.3 - 2 = 2.3m

a = 0.632 x 4.3 = 0.91ms-2

So difference = 1.7 - 0.91 = 0.79ms-2 i.e. 7 x bigger than the space station

5. Flying Pigs

You can determine the acceleration due to gravity by finding the 
time period of a flying pig moving in a banked circular path.

(a) By considering the forces acting on the flying pig as shown in the 
accompanying diagram, derive an expression for the time period, T, 
of the pig’s orbit in terms of its radius, r, and angle, θ.
Resolving vertically gives Fcos θ = mg

Resolving horizontally gives Fsin θ = mrω2

Dividing these equations gives tan θ = rω2/g

But ω2  = 2π/T

So 4π2/T2 = tan θ x g/r

T = 2π √(r/gtanθ)

(b) Given that g = 9.81ms-2 determine the time period of a pig for a radius of 20.0cm and angle 
of 30o.
T = 2π √ (0.20 / 9.81 tan30) = 1.18s
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(c) Devise an experiment using this idea where g can be calculated from the gradient of a graph. 
What will you plot on the x and y axes? How is the gradient related to g?
In a practical experiment r is not as easy to measure as the length of the pendulum L, and as 
Lsin θ = r, so our equation becomes

T = 2π√(Lsinθ/gtanθ)
And so T = 2π√(Lcosθ/g)

Plotting a graph of T2 against cos θ gives a straight line with gradient 4π2/g

6. Wall of Death

An amusement park ride consists of a large vertical cylinder that spins about its axis fast enough 
that any person inside is held up against the wall when the floor drops away. The coefficient of 
static friction between the person and the wall is µs, and the radius of the cylinder is R. 

(a) Show that the maximum period of revolution necessary to keep the person from falling is: 

Fn  =  mRω2 where ω = 2π/T
Ff = mg = µsFn

mg/µs = mR4π2 / T2 

T = √ (4π2Rµs /g)

(b) Obtain a numerical value for T if R = 4.00m and µs = 0.40
T = √ (4π2  x (4 x 0.40 / 9.8)) = 2.54s

(c) How many revolutions per minute does the cylinder make?
60 / 2.54 = 23.6 revolutions per minute
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7. Banked Track Circular Motion With Friction

A car rounds a banked curve as in the diagrams below. The radius of curvature of the road is R, 
the banking angle is θ and the coefficient of static friction is µ.

(a)  Determine the range of speeds the car can have without slipping up or down the road
when the car is about to slide “up” the bank and when the car is about to slide “down” the bank. 

HINT: Friction always opposes the motion so we must look at two possibilities for the friction 
force. We must use separate free-body diagrams for the two cases 

when the car is about to slide “up” the bank when the car is about to slide “down” the bank 
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1. max velocity

Resolving horizontally  mv2 / r = Fn sinθ + µFn  cosθ  so  v2  =        (Fn sinθ + µFn cosθ)

Resolving vertically mg = Fn cosθ  -  µFn sinθ  so  m = (Fn cosθ - µFn sinθ) / g

This gives v2  = rg (Fn sinθ +  µFn  cosθ) / (Fn cosθ -  µFn sinθ)

So vmax = √ (rg (sinθ + µcosθ) / (cosθ - µsinθ))

2. min velocity

Resolving horizontally  mv2 / r = Fn sinθ - µFn cosθ  so  v2  =       (Fn sinθ - µFn cosθ)

Resolving vertically mg = Fn  cosθ + µFn sinθ  so  m = (Fn cosθ +  µFn  sinθ) / g

This gives v2  = rg (Fn  sinθ - µFn cosθ) / (Fn cosθ + µFn sinθ)

So  vmin   = √ (rg (sinθ - µcosθ) / (cosθ + µsinθ)) 

(b) Find an equation for the minimum value for μ such that the minimum speed is zero.

From above, with vmin  = 0    sinθ = µcosθ so µ = tanθ

(c) What is the range of speeds possible if R = 100m, θ = 10o, and μ= 0.10 (slippery conditions)?

vmax    =  √(100 x 9.81 (sin10 + 0.1 x cos10) / (cos10 - 0.1 x sin10))

vmax = 16.6 ms-1

vmin = √(100 x 9.81 (sin10 - 0.1 x cos10) / (cos10 + 0.1 x sin10))

vmin = 8.73ms-1
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8. Vertical Circular Motion

A roller coaster is going through a loop that has a radius of 4.80m. The roller coaster cars 
have a speed of 13.8ms-1 at the top of the loop. During testing and development of the roller 
coaster, it was determined that the cars and passengers have a combined mass of 4800kg on 
an average run. 

(a) Determine the amount of force the track must be designed to withstand at the top in 
order to keep the cars going around the loop.

F = mv2 / r – mg = 4800 x 13.82/4.8 – 4800 x 9.81 = 143,000N

(b) Determine the minimum speed the cars on this roller coaster can move in order to just 
barely make it through the loop at the top.

F = mv2 / r – mg where F = 0

So v = (rg)1/2 = (4.8 x 9.81)1/2 = 6.86ms-1

(c) The track for the roller coaster mentioned in the last two examples needs to actually be 
stronger at the bottom of the loop. Although the cars will actually speed up as they come down 
to the bottom of the loop, assume the same velocity, radius, and mass as above and determine 
the amount of force the track must be able to withstand at the bottom of the loop.

F = mv2 / r + mg = 4800 x 13.82 / 4.8 + 4800 x 9.81 = 238,000N
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